知识点总结与练习题
核心概念 (Core Concept):代数分式是形如 \(\frac{P(x)}{Q(x)}\) 的表达式,其中 \(P(x)\) 和 \(Q(x)\) 都是多项式,且 \(Q(x) \neq 0\)。
公式 (Formula):\(\frac{P(x)}{Q(x)}\) 其中 \(Q(x) \neq 0\)
定义 (Definition):通过因式分解和约分,将复杂的分式化简为最简形式。
应用场景 (Application):适用于各种类型的代数分式化简问题。
核心方法 (Core Methods):
题目:化简 \(\frac{7x^4 - 2x^3 + 6x}{x}\)
解题步骤说明:
题目:化简 \(\frac{x^2 + 6x + 5}{x^2 + 3x - 10}\)
解题步骤说明:
化简以下分式:
a) \(\frac{4x^4 + 5x^2 - 7x}{x}\)
b) \(\frac{7x^5 - 5x^5 + 9x^3 + x^2}{x}\)
c) \(\frac{-x^4 + 4x^2 + 6}{x}\)
答题区域:
化简以下分式:
a) \(\frac{(x + 3)(x - 2)}{(x - 2)}\)
b) \(\frac{(x + 4)(3x - 1)}{(3x - 1)}\)
c) \(\frac{(x + 3)^2}{(x + 3)}\)
答题区域:
化简以下分式:
a) \(\frac{x^2 + 10x + 21}{(x + 3)}\)
b) \(\frac{x^2 + 9x + 20}{(x + 4)}\)
c) \(\frac{x^2 + x - 12}{(x - 3)}\)
答题区域:
化简以下分式:
a) \(\frac{x^2 + x - 20}{x^2 + 2x - 15}\)
b) \(\frac{x^2 + 3x + 2}{x^2 + 5x + 4}\)
c) \(\frac{x^2 + x - 12}{x^2 - 9x + 18}\)
答题区域:
a) \(\frac{4x^4 + 5x^2 - 7x}{x} = 4x^3 + 5x - 7\)
b) \(\frac{7x^5 - 5x^5 + 9x^3 + x^2}{x} = \frac{2x^5 + 9x^3 + x^2}{x} = 2x^4 + 9x^2 + x\)
c) \(\frac{-x^4 + 4x^2 + 6}{x} = -x^3 + 4x + \frac{6}{x}\)
a) \(\frac{(x + 3)(x - 2)}{(x - 2)} = x + 3\)
b) \(\frac{(x + 4)(3x - 1)}{(3x - 1)} = x + 4\)
c) \(\frac{(x + 3)^2}{(x + 3)} = x + 3\)
a) \(\frac{x^2 + 10x + 21}{(x + 3)} = \frac{(x + 3)(x + 7)}{(x + 3)} = x + 7\)
b) \(\frac{x^2 + 9x + 20}{(x + 4)} = \frac{(x + 4)(x + 5)}{(x + 4)} = x + 5\)
c) \(\frac{x^2 + x - 12}{(x - 3)} = \frac{(x - 3)(x + 4)}{(x - 3)} = x + 4\)
a) \(\frac{x^2 + x - 20}{x^2 + 2x - 15} = \frac{(x + 5)(x - 4)}{(x + 5)(x - 3)} = \frac{x - 4}{x - 3}\)
b) \(\frac{x^2 + 3x + 2}{x^2 + 5x + 4} = \frac{(x + 1)(x + 2)}{(x + 1)(x + 4)} = \frac{x + 2}{x + 4}\)
c) \(\frac{x^2 + x - 12}{x^2 - 9x + 18} = \frac{(x + 4)(x - 3)}{(x - 3)(x - 6)} = \frac{x + 4}{x - 6}\)